

Climate Justice Jean Monnet Centre of Excellence

Università degli Studi di Padova

With the support of the Erasmus+ Programme of the European Union

INTERNATIONAL CONFERENCE ON CLIMATE JUSTICE – 1 June 2021

Oil, extractivism and inequality in Ecuador

Carlos Larrea

carlos.larrea@uasb.edu.ec

Universidad Andina Simón Bolívar

www.climate-justice.earth

Why Ecuador is relevant

- One of the most biodiverse countries in the world
- An oil dependent economy since 1972
- Oil extraction in the Amazon basin, huge environmental impacts
- Small, but still significant, oil reserves
- High potential for a successful transition to a low emission sustainable economy

Oil and development in Ecuador

- Ecuador is an oil exporter since 1972, and oil became the backbone of the economy
- ► The oil curse:
 - Low and unstable economic growth
 - Minimal economic diversification
 - Weak social distribution
 - High environmental effects
- Small remaining reserves: 10 years of net exports
- High potential for a diversification towards a biodiversity-based service economy

Per capita GDP in Ecuador: 1950-2019

Oil and Deforestation in Ecuador

Extractivism and development in Ecuador: 1972-2016

Economic Diversification

► Exports

- ▶ Oil: 57% of total exports, 29% of fiscal revenues but only 11% of GDP.
- ▶ Primary goods: 93% de exports (ECLAC).
- Weak productive diversification
 - Declining manufacturing-GDP ratio
 - ► Weak export diversification
 - Achievements in renewable energy (hydro megaprojects)
- Social Conditions
 - Poverty: 31%, Underemployment, 33%, Social inequality: Gini 0.52.
- Severe environmental costs

Underemployment in Ecuador: 2007-2020

Poverty in Ecuador: 2007-2020

Oil and unequal development in the Amazon

- As a detailed statistical analysis demonstrates, not only the Amazon is the poorest region of the country, but oil extraction has a detrimental role over local living conditions.
- The extractive model did not bring about social distribution and has generated a severe environmental degradation. Other Andean Amazon countries, like Peru and Colombia, share adverse social and environmental effects of oil expansion.

Social Development Index in Ecuador by Region and Area

Region and Area	1990	2001	2010
Rural Highlands	42.1	49.0	59.0
Urban Highlands	67.3	72.1	78.4
Rural Coast	42.4	47.7	55.3
Urban Coast	59.6	63.1	69.6
Rural Amazon	41.0	45.8	54.3
Urban Amazon	54.1	60.5	68.3
Rural Galápagos	62.1	65.9	69.6
Urban Galápagos	65.5	66.8	74.6
Total	55.2	60.4	68.1

An spatially autoregressive model for social development in Ecuador's Amazon

		InDesSoc100	Coefficient	Std. Error	Z	
		InDesSoc100				
	Dependent variable: Social Development Index (SDI)	Proximity to oil wells index	-0.261	0.026312	-9.93	
• Number of observations $= 2408$	Soil fertility index	0.854	0.4222169	2.02		
	Prop. of intervened areas	20.506	2.231269	9.19		
	Maximum likelihood estimates:	Prop. of intervened areas ²	-10.879	1.392222	-7.81	
	Travel time to markets	-0.482	0.0688226	-7		
	Wald $ch_12(11) = 8894.03$	Prop. Agriculture in EAP	-5.042	0.6216075	-8.11	
D rob $> chi2 < -0.0001$	Prob > chi2 < -0.0001	Prop. wage earners in EAP	7.233	0.6529073	11.08	
	1100 > Cm2 > -0.0001	Prop. logging in EAP	22.438	3.684288	6.09	
	Log likelihood = -7016.191	Dummy rural	-2.675	1.202942	-2.22	
		DRural*PropIntAreas	-2.666	1.328097	-2.01	
	$\blacktriangleright Pseudo R2 = 0.7842$	Constant	35.197	1.363232	25.82	
		Widist2 distance matrix				
		InDesSoc100	0.077	0.009	9.05	
		var(e.InDesSoc100)	19.876	0.573		